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Academic science is a culturally evolved social institution with 
formal rules, norms and conventions. However, in recent years, 
scientists have begun to examine the utility of even longstand-

ing characteristics of this institution1–3. For example, it is now widely 
recognized that preferentially valuing positive over negative results 
can generate publication bias, which distorts the published literature4,5; 
evaluating scientists based on their number of publications can cause a 
myopic focus on productivity at the expense of rigour6; and rewarding 
scientists based on the prestige of the journal in which they publish 
may incentivize scientists to present their work in an overly positive 
light, submit low-quality papers to high-impact journals and engage 
in other questionable research practices7–12.

The priority rule is a particularly longstanding scientific norm, 
in which individuals who are first to make discoveries receive dis-
proportionate credit relative to all other individuals who provide 
solutions to the same problem13,14. Famously, Charles Darwin was 
motivated to publish his writings on evolution by means of natural 
selection in part because of a concern that he would lose priority 
to Alfred Russel Wallace, who had developed a similar idea. In his 
famous letter to Charles Lyell, Darwin proclaimed “I rather hate the 
idea of writing for priority, yet I certainly should be vexed if any 
one were to publish my doctrines before me”15. Rewards for priority 
take on various forms, including eponymy (that is, naming a scien-
tific discovery after the scientist who discovered it), financial prizes 
(for example, the Nobel prize), an increased probability of publish-
ing in high-impact journals, and better professional positions and 
speaking engagements3,13,16,17. Little research explicitly documents 
the career repercussions of losing a priority race (that is, getting 
scooped). However, one survey of physical and biological scientists 
found that over 60% of scientists reported being scooped at some 
point in their careers18, and a recent study among structural biolo-
gists found that scooped papers received 28% fewer citations and 
were 18% less likely to appear in a top-ten journal19. This suggests 
that scientists have significant incentives to compete over priority 
of discovery.

Given its role as a major incentive, how does rewarding prior-
ity of discovery affect scientific inquiry? Rewards for priority can 

certainly be useful. For example, they may incentivize scientists to 
quickly solve problems, share findings with the scientific commu-
nity and efficiently distribute themselves among multiple research 
problems13,14. The prospect of losing out in a competitive system 
may also increase individual effort, task performance and innova-
tion relative to a system in which individuals are rewarded for each 
unit of output regardless of order (refs. 20–22, but see ref. 23). However, 
rewarding priority has potential repercussions. For example, it may 
disincentivize replication if scientists obtain higher expected pay-
offs by moving on to new research problems after being scooped 
on existing ones. One particularly longstanding concern is that 
rewards for priority may cause scientists to rush their work in an 
attempt to avoid being scooped13,24–26. Such rushed research could 
harm the research process by increasing the probability of mistakes 
or by reducing the information value (for example, sample size) of 
the final research product.

Several lines of evidence suggest that rewarding priority may 
cause scientists to sacrifice the quality of their research. In quali-
tative interviews, scientists admit to cutting corners in order 
to outcompete rivals27. In laboratory experiments using simple 
information-sampling paradigms, rewarding priority causes indi-
viduals to spend less time on exploration before making decisions 
between uncertain options23,28. More broadly, optimization models 
of scientists’ behaviour suggest that, when novelty is disproportion-
ately valued, scientists optimize their expected payoffs by conduct-
ing studies with low statistical power6,29. Concerns about rewarding 
priority in particular are so substantial that the academic journals 
eLife and PLoS Biology began to offer scoop protection (that is, 
allowing researchers to publish findings identical to those already 
published) in attempts to reduce the disproportionate payoffs to sci-
entists who publish first30,31, a policy that has recently been adopted 
by all PLoS journals32.

Although such research is suggestive, it has several limitations. 
By relying on general information-sampling paradigms in dyadic 
settings (for example, picking balls from urns28 or revealing tiles 
to guess the majority colour on a grid23), past experiments have 
missed critical features of scientific priority races, including the fact 
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that scientists can face multiple competitors, can abandon research 
problems upon being scooped, face time costs to start-up new stud-
ies and may receive larger payoffs for certain findings (for example, 
statistically significant results). Models of priority races have been 
subject to similar limitations33. Other models exploring the relation-
ship between rewarding novelty and research quality have assumed 
that scientists face optimization problems6,29,34,35. This assumption 
precludes the possibility that scientists’ payoffs depend on the strat-
egies of other scientists studying the same questions, which is an 
essential component of priority races. Moreover, no work has evalu-
ated the logic of whether policy changes offering scoop protec-
tion can improve the quality of scientific research. Thus, there is 
a surprising disconnect between claims about the repercussions of 
rewarding priority in science and the strength of the evidence that 
underlies these claims.

Here, we address these issues by developing an evolutionary 
agent-based model to test the effect of rewarding priority of dis-
covery on the scientific research process. Our model advances the 
existing literature in several ways. We incorporate critical aspects 
of real-world priority races, including the possibility of multiple 
competitors, the ability for scientists to abandon research problems 
upon being scooped, the fact that new problems have start-up costs 
and the possibility for differential payoffs for positive and nega-
tive results. As it turns out, several of these factors have significant 
effects on how competition for priority affects scientific reliability. 
Our model also evaluates the logical coherence of scoop protection 
reforms and identifies the conditions under which scoop protection 
increases scientific reliability. We find that, although scoop pro-
tection generally increases reliability, this effect is negligible when 
there are low start-up costs to single studies or when negative results 
are highly valuable. Finally, our model identifies start-up costs as a 
heretofore overlooked mechanism to reduce the negative effects of 
competition. This mechanism has direct implications for the unin-

tended consequences of emerging reforms, such as pre-registration 
and registered reports.

results
See the Methods for full model details and https://osf.io/cbftz/ for 
a code-review report. Consider a population of n = 120 scientists. 
Each scientist is characterized by two parameters representing their 
characteristic methods: the sample size of their conducted research 
studies, s, and their probability of abandoning a research ques-
tion when another scientist publishes a result on that question, a. 
Scientists transmit their methods to trainees, so the distributions 
of these parameters can evolve across generations. On any given 
question, a scientist’s statistical power, pwr, is a function of three 
parameters: sample size, s, the false positive rate, α, and the size of 
the effect being studied, e. There are an infinite number of research 
questions, each of which is characterized by an effect size (rounded 
to one decimal place) drawn from an exponential distribution with 
a rate parameter, λ, of 5. A maximum of m scientists can work on 
any given question.

A scientist begins their career on the smallest-numbered open 
research question. Once their career has started, a scientist collects 
data until they reach their desired sample size (dictated by their s 
value). Once a scientist has completed a study, they perform a sig-
nificance test and obtain a positive result with probability pwr or α 
for questions with a true effect or no true effect, respectively. The 
results of all completed studies are published, but there may be bias 
against negative results (see below). Once a scientist publishes a 
result, the scientist’s payoff is determined by v (the novelty of the 
result) and whether the result is positive (that is, significant) or 
negative (that is, non-significant). v is a function of the number of 
previously published results on a research question and d (the sever-
ity of the cost of being scooped). Supplementary Fig. 1 illustrates the 
function that determines the payoff for a published result.
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Fig. 1 | Scientists’ flow of behaviour within a single generation. Scientists begin their career by being assigned to an open research question. They then 
collect data on that question until reaching their pre-specified sample size, at which point they conduct a significance test, publish their data and obtain 
a payoff as a function of the type of result (positive or negative) and the number of previously published results on that research question (novelty of the 
result). After publication, scientists move to a new open research question. Scientists who are in the process of data collection when another scientist 
publishes on that question (scooped scientists) probabilistically abandon that question every time they are scooped, where a determines the probability 
of abandonment. Scientists who abandon then move to a new research question that is not currently being studied by the scientist who scooped them. 
Scientists who do not abandon continue data collection on the same question until either reaching their pre-specified sample size or abandoning the 
question after being scooped by a competitor. This process continues until scientists reach the end of their careers for that generation, at which point all 
scientists retire.
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Figure 1 provides a visualization of scientists’ behaviour within 
our model. Upon retiring, each scientist’s fitness is calculated as pro-
portional to their accumulated payoffs. A new (non-overlapping) 
generation of scientists is then created, with their s and a values 
sampled from members of the previous generation, weighted by fit-
ness. This evolutionary component corresponds to the assumption 
that successful scientists are more likely to pass on their research 
strategies to subsequent generations. The evolutionary process 
proceeds for 500 generations. Table 1 summarizes all of the model 
parameter values. The following section describes the model results. 
The qualitative patterns presented below hold across all parameter 
values explored in our model, unless noted otherwise.

More competitors promote the cultural evolution of smaller 
sample sizes. Figure 2 plots equilibrium sample size as a function 
of the maximum number of competitors for each research question 
(m), the relative benefit of negative results (bn) and the cost of being 
scooped (d). For illustrative purposes, Fig. 2 depicts a scenario in 
which the start-up cost, c = 400. Similar qualitative results occur for 
all start-up costs (see Fig. 3 and Supplementary Section 1).

The more competitors, the smaller the equilibrium sample size. 
More competitors increase the probability that any given scientist 
will be scooped, which favours scientists who conduct research 
with smaller sample sizes. To illustrate, consider a case where the 
effect size = 0.2, start-up cost = 0, benefit to negative results = 0 
and decay = 10. That is, only positive first publications generate 
a tangible benefit. Imagine two competitors with sample sizes 50 
and 200, respectively. The scientists have statistical power of 0.17 
and 0.51, respectively, to detect e = 0.2. The s = 50 scientist can 
conduct four studies (at time periods 50, 100, 150 and 200), while 
the s = 200 scientist can only conduct one during the same time (at 
time period 200). The s = 50 scientist’s probability of detecting at 

least one statistically significant result before the s = 200 scientist 
finishes sampling is 1 − 0.833 = 0.43 (the complement of obtain-
ing three non-significant results). In this case, the s = 200 scientist 
has a 43% probability of being scooped before completing their 
study. Now consider a case where the s = 200 scientist faces seven 
other competitors, all of whom have s = 50. In this case, the prob-
ability that at least one competitor obtains at least one statistically 
significant result before the s = 200 scientist finishes sampling is 
1 − 0.577 = 0.98 (the complement of all seven competitors obtaining 
only non-significant results).

Scoop protection promotes larger sample sizes. As scooped 
results become more beneficial (smaller values of d), populations 
of scientists evolve towards larger equilibrium sample sizes. In other 
words, scoop protection favours larger studies. Larger benefits to 
publishing scooped results allow scientists who are most likely to 
get scooped (that is, those with larger sample sizes) to receive larger 
payoffs. This reduces the relative payoff difference between scooped 
scientists and those who are fastest to finish sampling (that is, those 
with smaller sample sizes).

Rewarding negative results promotes smaller sample sizes. As 
negative results become more beneficial (larger values of bn), popu-
lations of scientists evolve towards smaller equilibrium sample sizes 
(Fig. 2). When positive and negative results are equally valuable 
(bn = 1), the effect of the other parameters is minimal: populations 
rarely evolve to sample sizes larger than 10. This occurs because sci-
entists have little incentive to conduct large studies—conducting a 
small, underpowered study usually produces a negative result, but 
this result is worth just as much a result from a larger, well-powered 
study. However, conducting many small studies produces results at 
a higher rate than conducting fewer large studies. This favours sci-
entists who conduct studies with smaller sample sizes.

Larger start-up costs promote larger sample sizes. Figure 3 plots 
equilibrium sample size as a function of the number of competitors, 
the relative benefit of negative results and the start-up cost to single 
studies. For illustrative purposes, we depict only two values for the 
cost of being scooped (see Supplementary Section 1.1).

When start-up costs are small, populations of scientists evolve 
towards very small sample sizes. Larger start-up costs increase 
equilibrium sample sizes. The reason for this effect is as follows. 
Scientists who conduct studies with small sample sizes have low 
statistical power—their expected probability of obtaining a statisti-
cally significant result in a single study is low. Instead, their success 
depends on performing many studies as quickly as possible. This 
is most profitable when start-up costs are low because scientists 
can perform multiple successive studies quickly. When the goal is 
to obtain at least one statistically significant finding, scientists use 
a simple statistical test to compare the means of two groups (for 
example, a t-test), and effect sizes are small to medium, running 
many underpowered studies is a more efficient strategy than run-
ning a single well-powered study36. Large start-up costs disincentiv-
ize scientists from pursuing such a quantity strategy because they 
impose a time cost on the scientist every time they start (or restart) 
a study. Such a time cost disproportionately affects scientists who 
conduct more, smaller-sample-size studies.

Thus far, we have focused on how different reward structures 
affect the optimum sample size for individual scientists. However, 
these individual strategies have consequences for the efficiency and 
reliability of science as a whole. We assess these consequences by 
computing several population-level outcomes: (1) positive predic-
tive value (PPV); (2) the proportion of research questions with more 
true than false results; and (3) the average change in log-odds belief 
per study. We also explore: (4) the proportion of time spent produc-
tively; (5) the proportion of results that are true; (6) the proportion 

Table 1 | Parameter definitions and values

Parameter Definition value [range]

n Population size 120

s Scientist’s target sample size Uniform [2–1,000]

a Scientist’s probability of 
abandoning a research 
question when scooped

Uniform [0–1]

α False positive rate 0.05

e Effect size Exponential (λ)

λ Rate parameter characterizing 
distribution of effect sizes

5

t Scientists’ career length 15,000 if c > 10; 5,000 
if c = 10

cs Sample cost (number of time 
steps to acquire one data 
point)

1

c Start-up cost (number of time 
steps to set up a study)

10, 100, 200 or 400

m Maximum number of 
scientists per research 
question

1, 2, 4 or 8

d Decay parameter determining 
the penalty for being scooped

0, 0.15, 0.4, 1 or 10

bn Payoff from publishing negative 
results, relative to positive 
results

0, 0.25, 0.50, 0.75 or 
1.00

s and a are unique to each scientist, whereas all of the other parameter values are true for all 
scientists. Where parameters could take on multiple values, we explored all possible combinations, 
with 50 repeat simulations for each combination.
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of questions with equal or more true than false results; (7) the total 
number of research questions with more true than false results; (8) 
the difference between the total number of true and false results; 
and (9) the average change in the absolute value of log-odds belief 
(see Supplementary Section 3).

PPV. PPV is the probability that a positive (that is, statistically 
significant) result corresponds to a true effect. We calculate 
PPV by dividing the number of true positive results by the total 
number of positive results (that is, both true and false positives). 
Figure 4 depicts PPV for start-up costs of 10 and 400. More com-
petitors, larger benefits to negative results, smaller start-up costs 
and a larger cost to being scooped all decrease PPV. This occurs 
because these factors cause scientists to conduct studies with 
smaller sample sizes, which causes the average study to have lower 
statistical power. This decreases the true positive rate, while the 
false positive rate remains constant, which lowers the ratio of true 
to false positive results37.

Proportion of research questions with more true results. Scientists 
sometimes assess evidence for research questions using heuristic 
tallies of positive and negative results38. As such, the proportion of 
questions with more true than false results is a useful metric for 
evaluating the proportion of questions for which scientists will 
acquire accurate beliefs. This metric is not equivalent to the pro-
portion of questions with more significant versus non-significant 
results (that is, a tally39) because, in our model, approximately 22% 
of questions have null effects. Figure 5 depicts the proportion of 
research questions with more true than false results, for start-up 
costs of 10 and 400.

Competition decreases the proportion of questions with more 
true than false results. This effect occurs because competition low-
ers equilibrium sample sizes, which decreases the statistical power 
of the average study, thereby increasing the proportion of results 
that are negative on questions with true effects. The only region of 
parameter space in which the proportion of questions with more 
true than false results is approximately 50% or larger occurs when 
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(that is, decay) is large and when negative results are more valuable.
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competitors, when the cost of being scooped (that is, decay) is large and when negative results are more valuable.
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positive results are worth much more than negative ones and the 
costs for being scooped are small.

When the start-up cost is low, scientists conduct studies with 
nearly the smallest possible sample size, even without competition. 
This means that most results are negative, despite the fact that 78% 
of research questions have a true effect. Overall, 22% of the time, the 
effect size of a question is 0, and the population ends up generat-
ing more negative than positive results on that question. When the 
start-up cost is high, competition has the largest effect on equilib-
rium sample size, which reduces the proportion of questions with 
more true results. When either the benefit to negative results or the 
cost of being scooped is large, equilibrium sample size is already 
small, so competition has a minimal effect.

Average per-study change in belief. Consider a scenario in which 
scientists are perfect Bayesians and use Bayes’ rule to update their 
beliefs regarding the epistemic status of effects. Assume that sci-
entists know (1) the results of all published studies; (2) the global 

false positive rate; (3) the average effect size; and (4) their studies’ 
statistical power to detect the average effect size. The assumption 
that scientists know their statistical power to detect the average 
effect but are unaware of their exact statistical power on a specific 
research question is reasonable—knowledge of exact statistical 
power requires perfect information about each effect size, which is 
unrealistic and would mean that conducting a study is unnecessary 
in the first place.

Will such Bayesian scientists inevitably acquire accurate beliefs 
about whether research questions have a true or null effect? Or are 
there cases in which scientists will acquire false beliefs about the 
epistemic status of an effect? To address this question, we com-
puted the mean change in belief per published result, for each effect 
size, across all model parameter combinations. The mean change 
in belief in the correct direction is one indicator of the informa-
tion value of the average study. As in a recent model of scientists’ 
expected change in beliefs5, we use a log-odds scale. This is con-
venient because, unlike the probability scale, each published result 
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increases or decreases the log-odds belief by a constant increment. 
Each published positive result increases the log-odds of belief by the 
following constant increment:

ln
1� β

α

� �
>0

Each published negative result decreases the log-odds of belief by 
the following constant decrement:

ln
β

1� α

� �
<0

where β is the false negative rate (1 – pwr) and α is the false posi-
tive rate (0.05). For details and derivation, see ref. 5. Figure 6 plots 
the mean change in log-odds belief as a function of the effect 
size, number of competitors and the cost of being scooped, when 
the benefit to negative results is 0.25. The same patterns hold for 
effect-size distributions with a larger proportion of null effects (see 
Supplementary Section 5).

For all effects (except e = 0.1; see below) the average study shifts 
scientists’ beliefs in the correct direction. That is, the average study 
makes scientists more confident that a true effect is indeed true and 
a null effect is indeed null. More competitors, larger costs for being 
scooped, smaller start-up costs and larger benefits to negative results 
all decrease the average change in log-odds belief by decreasing the 
average sample size of conducted studies. That is, when sample sizes 
are small, the average study provides less information. When effects 
are very small (e = 0.1), the average study shifts scientists’ beliefs in 
the wrong direction—a shift that occurs across all parameter values 
in our model. This occurs because, when effect sizes are small, sci-
entists overestimate their statistical power and their beliefs are more 
strongly influenced by the large number of false negative results 
than they would be if scientists had perfect information about their 
statistical power.

Discussion
We developed an evolutionary agent-based model to test the effect 
of rewarding priority of discovery on the scientific research process. 
Our model incorporated critical aspects of real-world priority races, 
including the possibility of multiple competitors, the ability for sci-
entists to abandon research problems upon being scooped, start-up 
costs to new problems, and differential payoffs for positive and 
negative results. We find that, across a broad range of parameters, 
rewarding priority causes populations to culturally evolve towards 
conducting research with smaller sample sizes. This reduces the 
reliability of published research and the information value of the 
average study. We identify two ways to attenuate the negative effects 
of competition for priority: increasing the start-up cost to setting 
up single studies and increasing the payoffs for scientists who are 
scooped. However, we find that the benefits of scoop protection 
are negligible when either negative results are highly rewarded or 
start-up costs are small. Our model also identifies conditions under 
which rewarding negative results incentivizes lower-quality research 
and conditions under which the average study causes scientists to 
develop false beliefs about the epistemic status of effects.

Scholars have had longstanding concerns that competition 
negatively affects the scientific process13. Such concerns have even 
inspired scoop protection reforms at several prominent journals30–32. 
Our model provides theoretical support for such reforms. Allowing 
scooped scientists to receive some payoff reduces the incentive to 
run small-sample-size studies in order to increase the probability 
of being the first to publish a result, which improves the average 
quality of conducted studies. However, scoop protection is no pana-
cea, as it causes scientists to persist on research questions even after 
several results have been published, which leads the population to 

investigate fewer total questions (see Supplementary Section 3.9). 
Furthermore, when starting up a new study is cheap or when nega-
tive results are highly valued, scientists are incentivized to run small 
studies even with scoop protection. This reduces the positive pre-
dictive value (Fig. 4) and causes the majority of research questions 
to have more false than true findings (Fig. 5). Thus, although our 
model supports the logical coherence of scoop protection reforms, 
it also highlights that scoop protection is not sufficient to incentiv-
ize high-quality research or reliable published literature.

In our model, increased start-up costs allow populations to main-
tain higher sample sizes at equilibrium. Start-up costs are far from 
efficient: every researcher is forced to waste time on each investi-
gation, resulting in fewer questions investigated and fewer com-
pleted studies (see Supplementary Sections 3.7 and 3.8). However, 
start-up costs disincentivize a quantity strategy wherein research-
ers conduct large numbers of underpowered studies36. This occurs 
because start-up costs place a time cost on a scientist every time 
they start a study, and scientists with smaller sample sizes pay this 
cost relatively more frequently. Our results point to start-up costs 
as one potentially important solution to the problem of scientific 
unreliability. Coincidentally, existing reforms have inadvertently 
introduced such costs. For example, pre-registration and registered 
reports make researchers spend more time thinking about and 
designing protocols before running investigations40,41. The time cost 
inherent in these practices is often conceptualized as an inconve-
nience. However, our model implies that such costs have an impor-
tant function: they incentivize scientists to conduct higher-quality 
research than they would otherwise.

Note that the mechanism by which start-up costs incentivize 
higher-quality research does not necessarily depend on the timing 
of such costs. Any costs disproportionately paid by scientists who 
attempt to conduct quick, low-quality research will serve the same 
function10. These might include wrap-up costs, such as long peer 
review times, or costs at other points in the research pipeline (for 
example, an obligation to peer review n other papers for each sub-
mitted paper). In fact, start-up costs are a specific instantiation of a 
more general class of phenomena, wherein certain costs (for exam-
ple, search costs and costs to beginning new relationships) incen-
tivize individuals to invest more in a current endeavour instead of 
abandoning it in search of potentially better alternatives42,43. Other 
examples include the lengthy courtship rituals of some bird spe-
cies (for example, albatrosses) and costly gift giving in interper-
sonal relationships44,45. The more general lesson is that it is wrong 
to conceptualize inefficiencies in the scientific process as necessar-
ily harmful. For example, models demonstrate that inefficiencies 
in academic publishing, such as submission costs or long waiting 
times, can disincentivize scientists from submitting low-quality 
work to high-impact journals10,46–50 or from submitting low-quality 
grant proposals to funding competitions51. The relevant question 
is thus not ‘how can we reduce scientific inefficiency?’, but rather 
‘what are the costs and benefits of inefficiency and when are the 
costs large enough to worry about?’.

In practice, will adding costs to the research pipeline produce 
desirable outcomes? This depends on several factors. The extent to 
which start-up costs incentivize higher-quality research depends 
on sampling costs. If sampling costs are large, the time required 
to conduct a single study is determined primarily by sampling 
costs, and vice versa. Start-up costs lose their effectiveness as sam-
pling costs become relatively large (see Supplementary Section 
5.9). Thus, a complementary way to increase research quality is to 
reduce data collection inefficiencies without altering start-up costs. 
Other issues concern scientists’ strategic responses to costs. If sci-
entists can circumvent costs (for example, avoiding wrap-up costs 
by file-drawering studies with undesirable results), then costs may 
not effectively incentivize higher-quality research. If start-up costs 
are too high, scientists may be more willing to engage in question-
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able research practices52 to obtain publication-worthy findings from 
existing projects. Finally, it is worth noting that other solutions 
to the problem of scientific reliability (for example, stricter qual-

ity controls and minimum statistical power requirements) may be 
more desirable because they impose less of a burden on the scien-
tific process or less of a cost on scientists’ well-being.
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Fig. 6 | Mean change in log-odds belief per study. Mean change in log-odds belief per study (500 generations and 50 repeats), plotted for two levels of 
start-up cost, c = 10 (small start-up cost) and c = 400 (large start-up cost), and one level of benefit to negative results, bn = 0.25. Note the different axes in the 
two sets of plots. The y axis represents the natural log. Error bars represent 2 s.e. Dashed lines indicate no shift in belief. d, decay; m, number of competitors. For 
most effect sizes, the average study shifts scientists’ beliefs in the correct direction. When effects are small (that is, e = 0.1), the average study shifts scientists’ 
beliefs in the direction of no effect, despite the fact that a true effect exists. This pattern indicates that a population of scientists using Bayesian updating would 
be expected to shift their beliefs towards 100% confidence that true effects existed and that null effects did not exist. The exception is that, when true effects 
are small, scientists would be expected to shift their beliefs towards 100% confidence that there was no effect, despite the fact that a true effect existed.
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In our model, rewarding negative results reduces the equilib-
rium sample size and harms scientific reliability. This pattern occurs 
because we assume that the payoff for publication is independent 
of sample size or effect size. When negative and positive results are 
equally valuable, scientists have no incentive to conduct large stud-
ies in order to increase the probability of positive results—a large 
study costs more time but generates the same payoff as an under-
powered study that can quickly produce a negative result. How does 
this finding fit into ongoing discussions about whether research-
ers should publish all of their results2,53,54, or whether some types of 
publication bias5,39,55,56 or publication restrictions10,57–59 are desirable? 
Our model points out that, when study quality is not sufficiently 
rewarded, a bias against negative results incentivizes scientists to 
conduct larger studies. However, such an outcome comes at the 
cost of reducing the amount of information in the published litera-
ture5 and biasing estimates of true underlying effect sizes60. A better 
solution would thus be to supplement reforms to publish negative 
results with reforms that disincentivize underpowered studies. 
It is promising that several emerging reforms, such as changes to 
norms for reporting statistics (for example, effect sizes and confi-
dence intervals61), alternative statistical approaches (for example, 
Bayes factors and equivalence tests62,63) and new publishing formats 
that require high levels of statistical power (for example, Registered 
Reports41), all plausibly increase the rewards for null results from 
high-quality studies.

Our model has implications for the extent to which science is 
self-correcting. A longstanding notion is that the normative struc-
ture of science prevents the proliferation of false claims64. However, 
it is becoming increasingly clear that scientific self-correction is not 
guaranteed65 and that many factors can cause scientists to converge 
on false beliefs. Known mechanisms that impede self-correction 
include publication bias against null results5, lack of replication 
research39,66, excessive conformity67 and others68–70. Our model dem-
onstrates another mechanism by which scientists may converge 
on false beliefs. When effect sizes are small, the average study is so 
underpowered that most results are false negatives. Because scien-
tists update their beliefs based on the average effect size and their 
studies’ statistical power to detect the average effect, they overesti-
mate their statistical power (that is, underestimate their false nega-
tive rate) on research questions where effect sizes are smaller than 
average. As a consequence, each published negative result decreases 
scientists’ belief that there is a true effect more strongly than it 
would if scientists had perfect information about their statistical 
power. This causes scientists to falsely believe that there is no effect 
when a true effect indeed exists (Fig. 6). This finding suggests that 
low statistical power combined with imperfect information about 
statistical power are sufficient to cause scientists to converge on 
false beliefs, and provides yet another reason why increasing the 
statistical power of empirical research is essential60.

Our model suggests several avenues for empirical research 
(Table 2). These include evaluating how research quality varies 
across fields that vary in the cost of being scooped and whether 
reforms that increase the start-up cost to single studies (for exam-
ple, pre-registration) incentivize fewer, higher-quality studies. Our 
model has several limitations, which could be addressed in future 
work. For example, our assumption that payoffs are independent 
of study quality or effect size could be modified such that larger 
studies and effects generate higher payoffs. Similar assumptions 
are made in some models of priority races in which mature ideas 
receive larger payoffs33. Our assumption that scientists pay a cost 
for each study could be modified such that scientists strategically 
decide whether to pay costs. Another assumption—that scientists 
can only respond to competition by modifying their sample size and 
probability of abandonment—ignores other potential responses to 
competition (for example, increasing research effort21,22,71, but see 
refs. 23,72). Other extensions might allow questionable research 

practices52 in response to competition. Finally, our model assumes 
that all results are published, in contrast with several existing mod-
els5,29,35,39. We do not think that modifying this assumption would 
qualitatively affect our results. Our model varied the relative benefit 
of negative results while keeping publication probability constant. 
This is equivalent, in terms of expected value, to varying the prob-
ability of publication without varying the relative benefit to negative 
results. Furthermore, a simpler version of our model in which only 
positive results were published produced the same qualitative pat-
terns as the current model73.

Effective interventions to improve scientific practice require a 
causal understanding of the forces that shape scientists’ behaviours. 
Our model takes one step towards this goal. We encourage more 
formal modelling of ideas for scientific reform, as a complement 
to verbal arguments and empirical tests. Such models are useful 
for evaluating ideas in theory instead of wading directly into the 
empirical morass74. This improves scientific efficiency by weeding 
out logically incoherent ideas, determining the conditions under 
which an idea applies, and making transparent which observa-
tions must be made to test an idea’s empirical validity75. After all, 
science walks forward on two feet—theory and experiment—and 
continuous progress depends on maintaining an intimate connec-
tion between the two76.

Methods
Consider a population of n = 120 scientists. Each scientist is characterized by two 
parameters representing their characteristic methods: the sample size of their 
conducted research studies, s, and their probability of abandoning a research 
question when another scientist publishes a result on that question, a. Scientists 
transmit their methods to trainees and trainees select mentors according to 
mentors’ success, so the distributions of these parameters can evolve across 
generations. Each population is initialized by sampling n integer values of s from 
a uniform distribution [2–1,000] and n real-numbered values of a from a uniform 
distribution [0–1]. Sensitivity checks indicate that the simulation results are robust 
to initializing populations from distributions of high or low s and a values (see 
Supplementary Section 5.2 and 5.3) and that the long-run stable distributions of 
sample sizes (that is, equilibrium sample sizes) to which populations evolve are 
robust to running the simulation with a larger population size (see Supplementary 
Section 5.5). Equilibrium abandonment probabilities are affected by population 
size; however, the abandonment strategy that evolves at large population sizes is 
highly artificial and does not qualitatively affect equilibrium sample sizes (for full 
abandonment analyses, see Supplementary Sections 2, 5.5 and 5.6).

On any given question, a scientist’s statistical power, pwr, can take on any 
real-numbered value in the range 0.05–1. pwr is a function of three parameters: 
sample size, s, the false positive rate, α, and the size of the effect being studied, 
e. pwr is calculated using a two-sample t-test, implemented with the pwr.t.test() 
function in the pwr package in R77,78. This effectively assumes that all research is 
of the form where scientists collect s independent data points from each of two 

Table 2 | Hypotheses for future empirical research

Larger rewards for scientists who are first to provide a solution to a 
research problem (for example, a treatment for COVID-19) lead to 
lower-quality research as scientists attempt to increase their chances of 
coming first.

Across fields, the extent to which novel results receive a larger payoff 
than secondary (that is, scooped) results is associated with lower 
statistical power and a higher rate of errors in published studies.

Reforms to increase the publication of negative results, without 
corresponding controls on the quality of research, lead scientists to 
conduct lower-quality studies.

Field-wide reforms that increase the start-up cost to single studies (for 
example, mandating rigorous pre-registration of each conducted study) 
cause to scientists to conduct fewer (but higher-quality) studies.

Fields in which individual data points are cheap relative to the start-up 
costs of single studies will be characterized by higher-quality studies than 
fields in which individual data points are relatively costlier (for example, 
studies of captive versus wild animal populations).
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populations and test for a difference between the two. Examples of such a research 
question may be whether some drug (for example, lithium) effectively treats some 
disease (for example, bipolar disorder) or whether P values are more difficult to 
understand than Bayes factors.

Following convention, the level of statistical significance required for a positive 
result, α, remains fixed at 0.05. We assume that there are an infinite number of 
research questions, each of which is characterized by an effect size e, where e 
represents a standardized mean difference between two populations. Given that 
effect sizes in several fields are known to be distributed exponentially79,80, we 
assume that the e value of each question is drawn from an exponential distribution, 
with a rate parameter (λ) of 5 and rounded to the nearest 0.1. This corresponds to 
a distribution of Cohen’s d effect sizes with a mean of 0.20 and a median of 0.10, 
and where roughly one in five research questions has an effect size of 0. Alternative 
distributions of exponentially distributed effects do not qualitatively affect our 
results (see Supplementary Section 5 and ref. 73).

Each research question has a unique ID (for example 1, 2, 3, ….) and a 
maximum of m scientists can work on any given question. A scientist begins 
their career on the smallest-numbered open research question (that is, the 
smallest-numbered question occupied by fewer than m other scientists). We 
do this to avoid unrealistic outcomes (for example, all scientists working on a 
single question or all scientists working on different questions) and to control 
the intensity of competition by manipulating the number of scientists allowed to 
work on a single question. Each scientist’s career lasts t = 15,000 time steps. In one 
specific case of low start-up costs (c = 10; see below), career length was reduced 
to 5,000 time steps for computational efficiency, without affecting the simulation 
results (see Supplementary Section 5.1).

Once their career has started, a scientist collects data until they reach their 
desired sample size as dictated by their respective s value. The number of time steps 
required to do this, t, is:

t ¼ scs þ c;

where cs represents the sample cost (the number of time steps needed to acquire 
one data point (fixed at 1)) and c represents the start-up cost (the number of time 
steps needed to set up a study). Thus, as c increases, variations in s have a smaller 
effect on a scientist’s time cost per study. We assume that c is independent of s (for 
example, scientists may need to obtain Institutional Review Board approval or 
pre-register their research plan before conducting a study); such actions cost time 
independent of the number of participants that a scientist ultimately recruits. Once 
a scientist has completed a study, they perform a significance test. For questions 
with a true effect (e > 0), a scientist obtains a statistically significant result with 
probability pwr. For questions with no true effect (e = 0), a scientist obtains a 
statistically significant result with probability α.

We assume that the results of all completed studies are published but that there 
may be bias against negative results (see below). Once a scientist publishes a result, 
the scientist’s payoff is determined by the novelty of the result, v, and whether the 
result is positive (that is, significant) or negative (that is, non-significant). The 
novelty of a result is calculated as:

v ¼ 1
1þ number of previous results on question

� �d

where d (the decay) determines the severity of the cost of being scooped. When d 
is small (for example, <0.5), v decays slowly, whereas when d is large (for example, 
>2), v decays rapidly. Supplementary Fig. 1 illustrates the relationship between 
d and v as a function of the number of published results. For positive results, 
scientists receive payoff v. For negative results, scientists receive payoff vbn, where 
0 ≤ bn ≤ 1. In the extreme case of bn = 0, there is no reward for publishing null 
results. This payoff function reflects the assumption that statistically significant 
results may be valued more than non-significant ones and is mathematically 
equivalent, in terms of expected value, to assuming that non-significant results 
have a smaller probability of being published.

After publishing, the scientist moves to the next open research question (that 
is, one with fewer than m other scientists working on it) for which no results have 
yet been published. The scientist then starts a new study from scratch. All other 
scientists working on the question corresponding to the newly published result 
(and who are not themselves publishing a result during that time period) abandon 
that question with a probability determined by their individual a value.

Those who abandon move on to the next open research question. To prevent 
scientists from getting stuck on the same questions as the scientist who just 
scooped them, we assume that scientists who abandon move to a different question 
than the one assigned to their scooper (see Supplementary Section 6). This process 
repeats until scientists reach the end of their careers, at which point all scientists 
retire. Figure 1 provides a visualization of scientists’ behaviour within our model.

When one generation of scientists retires, a new (non-overlapping) generation 
is created. Each new trainee scientist inherits their s and a values from mentor 
scientists in the previous generation. For each trainee, mentors are chosen with a 
probability equal to the prospective mentors’ accumulated payoffs divided by the 
accumulated payoffs accrued by all prospective mentors. Mentors for each value 
are chosen independently, so most scientists have two mentors. This evolutionary 

component of our model corresponds to the assumption that scientists who are 
more successful (for example, have more publications) are more likely to pass 
on their research strategies to the subsequent generation of scientists. This is 
plausible if younger scientists preferentially imitate the behaviours of successful, 
well-established scientists (that is, payoff-biased social learning81,82) or if scientists 
who are more successful are more likely to remain in academia and are thus 
disproportionately available as cultural models for other scientists6,83,84. We assume 
that inheritance is noisy: a trainee’s s value is drawn from a normal distribution 
centred on their mentor’s value with a standard deviation of 2. The resulting s 
values are rounded to the nearest integer and truncated to remain in the range 
2–1,000. Values of s < 2 are set to 2 because two-sample t-tests require at least 
two samples per group. Similarly, a trainee’s a value is drawn from a normal 
distribution centred on their mentor’s value with a standard deviation of 0.01 and 
truncated to remain in the range 0–1. Table 1 summarizes all of the parameter 
values used in our model.

To ensure convergence to equilibrium sample sizes (see Supplementary Section 
7), the evolutionary process proceeds for 500 generations, at which point the 
simulation stops.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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