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Humans possess an unusual combination of traits, including our cognition,
life history, demographics and geographical distribution. Many theories pro-
pose that these traits have coevolved. Such hypotheses have been explored
both theoretically and empirically, with experiments examining whether
human behaviour meets theoretical expectations. However, theory must
make assumptions about the human mind, creating a potentially proble-
matic gap between models and reality. Here, we employ a series of
‘experimental evolutionary simulations’ to reduce this gap and to explore
the coevolution of learning, memory and childhood. The approach combines
aspects of theory and experiment by inserting human participants as agents
within an evolutionary simulation. Across experiments, we find that human
behaviour supports the coevolution of learning, memory and childhood,
but that this is dampened by rapid environmental change. We conclude
by discussing both the implications of these findings for theories of
human evolution and the utility of experimental evolutionary simulations
more generally.

This article is part of the theme issue ‘Life history and learning: how
childhood, caregiving and old age shape cognition and culture in humans
and other animals’.
1. Introduction
Humans are an unusual species: we inhabit an enormous variety of terrestrial eco-
systems [1–3], with total human biomass exceeding that of any non-domesticated
species [1]. Compared to other species, we build and use a wider variety of tools
[4–6], exhibit complex cognitive abilities like theory of mind [7–10] and causal
reasoning [11,12], and make more extensive use of cultural inheritance [13–16].
Across mammalian species, life history shows a strong relationship with body
size [17], but taking body size into account, we have an unexpectedly long juven-
ile period, a long adult lifespan and high early fertility followed by an extended
post-reproductive period [18,19]. Even in the details, human life history is unu-
sual: we have a long gestation period, high birthweight and early weaning, to
name but a few [20].

Much research proposes that these various features have coevolved. For
instance, it has been argued that post-reproductive adults function to provision
younger kin (such as juveniles or lactating women) with resources [21,22]. An
alternative (but not necessarily competing) hypothesis is that human life history
has been shaped by our dependence on cultural inheritance (see [23,24]). From
this point of view, an evolutionary function of the human post-reproductive
period is to increase the fitness of younger kin by transfer of information. Simi-
larly, the juvenile period may have been extended or modified to facilitate
learning ([24], also [25], though see [26]). In support of this, a study of teaching
among Fijian villagers found that grandparents were the next most likely indi-
viduals (behind parents) to act as teachers [27]. Similarly, in the same
populations, food taboos were preferentially learned from mothers,
grandmothers and other elders [28].
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In many cases, the evidence marshalled in support of coe-
volutionary hypotheses such as these is theoretical. For
instance, the coevolution of learning and memory [29] has
been examined using a model in which individuals’ fitness
depends on solving a series of ‘multi-armed bandit’ pro-
blems, in which an individual must learn which of several
options (arms) produces a reward in a given context
(bandit). For example, an individual might learn which
food resource to collect, contingent on the weather. In the
model, learning and memory were each underpinned by a
genetic locus. The learning gene determined the number of
arms individuals assessed at each bandit, after which they
would choose the arm associated with the greatest payoff.
The memory gene determined the length of time over
which individuals were able to recognize previously visited
bandits and so repeat past decisions without engaging in
further learning. Both learning and memory came at a cost
to fitness, meaning they would evolve only if they enhanced
decision-making. The results showed that under many con-
ditions, learning and memory will coevolve, i.e. they will
evolve as a pair, but not in isolation. This is because investing
in information collection pays off only if the information can
be accurately stored; similarly, investing in information sto-
rage pays off only if enough valuable information is stored
for later use.

Other evidence is empirical. For instance, Buchsbaum et al.
[30] argue for the coevolution of the extended juvenile period,
pretend play and causal reasoning on the basis of empirical
data showing that pretend play and causal reasoning are related
in young children. Specifically, they observe a correlation
between a child’s ability to engage in accurate causal reasoning
and their ability to engage in causally coherent pretend play.
The argument is that this correlation reflects the intertwined
evolutionary history of these traits: (i) the elongation of the
human juvenile period gave more opportunities for play,
(ii) the increase in play supported the development and evol-
ution of causal reasoning, and (iii) the evolution of causal
reasoning, in turn, increased the benefit of play and so
enhanced the benefits of a longer juvenile period.

The conjunction of theoretical and experimental
approaches to evolution has been highly successful, but even
so, it has limitations. Theoretical work typically necessitates a
number of assumptions in order to remain feasible. In the
case of cognition, this implies a simplified depiction of the
human mind. The traditional remedy for this is to conduct
laboratory experiments with human participants to test the
predictions of theory. But such experiments are limited to com-
paring predicted equilibria with human behaviour, and so
provide only indirect evidence of the evolutionary dynamics
that produced them.

Here, we present a series of ‘experimental evolutionary
simulations’ concerning the coevolution of cognition and
life history that provide empirical data not only about
human behaviour, but also about the evolutionary dynamics
that it produces. To do this, we recruit human participants as
agents inside an evolutionary simulation. We consider the
coevolution of the ability to gather information (learning),
store information (memory) and an early period of infor-
mation acquisition (childhood). Our goals are threefold.
First, to test theoretical predictions concerning the coevolu-
tion of learning, memory and childhood. Second, to
provide novel insights into the coevolution of these traits in
human history. Third, to illustrate the feasibility of
conducting experimental evolutionary simulations with
human participants as a means to test evolutionary hypo-
theses. We begin by providing an introduction to
experimental evolutionary simulation before continuing
with our specific experiments.
2. Experimental evolutionary simulations
An experimental evolutionary simulation can be most readily
understood as a traditional theoretical simulation, except that
human participants make decisions on behalf of simulated
agents. As such, while the agents inhabit a simulated
world, their decisions are not simulated but instead result
from human psychology.

Theoretical simulations also include the genetic evolution
of cognitive traits, with heritable simulated genes affecting
simulated decision-making, phenotypes and fitness. Human
participants, however, arrive with pre-existing genes and cog-
nition which cannot be directly manipulated. Nonetheless,
we can mimic the genetic evolution of human cognition by
assigning each agent a simulated genotype that affects the
task posed to the participant. For example, consider a simu-
lation in which a mutant ‘social learner’ genotype invades a
population of ‘asocial learners’ (as per [31]). All participants
are required to solve a fitness-relevant problem, but their
genome determines whether they receive social or asocial
information; participants with the asocial allele have access
only to environmental cues, while participants with the
social allele can view the decisions of their groupmates.
If social information improves decision-making, then the fit-
ness of the social learners will be higher, and the social
learning allele will spread via natural selection. This is the
approach we use here, with simulated genes masking aspects
of human cognition, and selection ‘unmasking’ them when
they increase fitness.

The inclusion of simulated genes differentiates this
approach from typical evolutionary experiments with human
participants. Experimental designs such as the transmission
chain and microsociety [32] have a rich history of being used
to experimentally model human cultural change, including
the cultural transmission of folk stories [33], stone knapping
skills [34], arrow head designs [35], paper plane designs [32],
computer code [36] and interpretations of Rorschach diagrams
[37]. However, they do not include a genetic component. In this
regard, our approach resembles experimental studies of genetic
evolution in fruit flies [38] and bacteria [39], although the gen-
etic component remains simulated and the participants are
human. As such, our focus is not on genetic change per se,
but rather how human behaviour drives genetic evolution.
It is therefore critical to our approach that aspects of decision-
making are assigned to human participants, allowing an
agent’s phenotype (and in turn, their fitness) to be jointly deter-
mined by both human cognition and simulated genes. As such,
the evolutionary dynamics produced result from both the
assumptions of the simulation and human psychology.

(a) Strengths
The primary strength of experimental evolutionary simulation
is its ability to produce genetic evolutionary dynamics
from human psychology. This can be contrasted with tra-
ditional theory that produces evolutionary dynamics but
relies on agents with simulated psychologies, and traditional
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experiments that involve human psychology but do not
produce evolutionary dynamics. With the current approach,
we can go further than comparing theoretical predictions
about equilibria with experimental data. We can instead com-
pare theoretical predictions about the entire evolutionary
process with data collected from an evolving population of
human participants. This is critical to questions about coevolu-
tion, which are fundamentally about the process of evolution,
not just the outcome.

Moreover, by including real (unsimulated) human partici-
pants, the need to make assumptions about the psychology of
simulated agents is removed. This is important because
theory is not just about understanding how evolution
works in the abstract (although this is certainly part of its
value [40]), but also about trying to understand specific
cases. For example, we have argued in support of gene–
culture interactions between human cognition and stone
tool technologies on the basis of theory showing that a
model including gene–culture interactions produces
dynamics that more closely resemble the archaeological
record than do those of a model without such interactions
[41]. In such cases, the gap between theory and historical rea-
lity created by assumptions may be problematic and the
inclusion of human psychology in evolutionary simulations
goes at least some of the way towards closing the gap.

A further benefit of experimental evolutionary simulations
is that they naturally include inter-individual variation
in decision-making to the extent that it exists in the human
population recruited from. This can be contrasted with
theory, where variation is often ignored under the assumption
that it is simply noise, despite the fact that theory modified to
include such variation shows it has evolutionary conse-
quences. For instance, behavioural variation supports the
evolution of cooperation [42,43] and may itself be an evolved
adaptation [44].
(b) Limitations
Aswith anymethod, there are limitations to experimental evol-
utionary simulations. Moreover, while in some ways this
approach combines the strengths of traditional theory and
experiment, it also brings with it some of their weaknesses.
For instance, as already mentioned, while real (unsimulated)
humanpsychology is introduced into the evolutionary process,
the rest remains simulated and so necessitates assumptions by
the researcher. Moreover, the participants in the experiment
may not be representative of our species as a whole, a problem
faced by all experimental work [45].

There are also some limitations specific to experimental
evolutionary simulations. For instance, although this
approach aims to produce reliable experimental dynamics,
it is currently not plausible to aim for the population sizes
or number of repeat simulations typical of theory, which
would collectively require millions of participants. As such,
experimental evolutionary simulations will likely involve
smaller populations and more constrained regions of par-
ameter space than typical theory. They may also require
preliminary theory to identify the population sizes and selec-
tion strengths required for reliable dynamics to be produced.

Nonetheless, modern experimental methods allow exper-
imental simulations to involve numbers of participants far
larger than in many traditional experiments (here we present
data from 4800 participants). A downside of this is that such
experiments may be logistically challenging, and are also
likely to be more expensive than smaller-scale studies.
Despite this, online recruitment services and experimental
software packages are reducing this burden. Here, we used
the experimental automation software Dallinger (see dallin-
ger.readthedocs.io) to conduct the experimental simulations,
recruiting large numbers of participants from Amazon’s
Mechanical Turk.

A final limitation of this approach is that where it exam-
ines the evolution of cognition and behaviour, the
psychology of participants cannot itself be directly manipu-
lated. Rather, experimental manipulations of the task are
used to mimic the evolution of cognitive abilities, by selec-
tively displaying stimuli or forcing certain options on
participants. The precise nature of these manipulations will
vary across experiments (and may not always be desired),
but it is important to note that they act only as a proxy for
the evolutionary process of interest.

(c) Summary
Experimental evolutionary simulations combine elements of
theory and experiment by recruiting participants to make
decisions on behalf of agents within an otherwise theoretical
simulation. This allows researchers to observe the evolution-
ary dynamics produced by human decision-making, and
includes naturalistic human variation in the evolving popu-
lation. Nonetheless, it has limitations and is intended to
complement rather than replace existing methods.
3. Experiment 1
The first experiment verifies that our experimental approach
produces robust evolutionary dynamics by examining
whether the coevolution of learning and memory observed
in theory [29] occurs when our experimental design con-
strains human behaviour to closely match theoretical
assumptions. To verify coevolution is taking place, we con-
ducted two parallel simulations, one in which memory
could evolve and another in which it could not. We predicted
that learning would evolve to greater levels when memory
was also capable of evolving than when it could not. This
experiment sticks close to theoretical assumptions and will
serve as a baseline for comparison with experiments 2 and 3.

(a) Methods
We carried out two experimental evolutionary simulations. In
each simulation, a population of 40 participants evolved for
40 generations (i.e. 1600 participants per simulation, each
participant playing the role of a single agent). This popu-
lation size and simulation length was chosen on the basis
of preliminary theory that suggested it was sufficient to
produce robust evolutionary dynamics.

Participants were recruited through Amazon’s Mechanical
Turk. While we did not collect demographic data, several
studies have examined the demographics of Mechanical Turk
workers and provide relevant information. The total worker
population is estimated to be stable at over 100 000 people,
although the effective population size may be smaller [46],
with around 2000 workers active at any one time [47]. Most
workers are US-based, with a sizable number of Indian
workers, and the US and Indian sub-populations being most
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final decision. (c) If participants revisit a familiar country, they cannot check locations again and are asked to make a single decision immediately.
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active at different times of day [47,48]. This may explain why
participant characteristics and behaviour can also vary by
time of day, as well as on weekends versus weekdays [49].
The worker population is diverse and somewhat comparable
to the overall US population in terms of age, sex, education
and socio-economic status, and is significantly more diverse
than typical undergraduate populations [50]. Nonetheless, it
is younger, more female, better educated and less rich than
theUS population as awhole [47,51]. Despite these differences,
Mechanical Turk workers behave similarly to the general US
population in many ways [52,53].

Upon being recruited, participants gave their consent,
were given instructions, completed the experiment and
were then debriefed and paid. Recruitment occurred one gen-
eration at a time: experimental slots were made available in
batches of 40 and once all 40 participants had successfully
taken part, the next batch was made available. This process
repeated until all generations were complete. Recruitment
and testing were approved by the Committee for Protection
of Human Subjects at University of California, Berkeley (pro-
tocol ID 2015-12-8227). The experiment took around 5 min
and participants were paid $0.50 for taking part, with an
additional performance-related bonus of up to $0.50.

Within each simulation, each participant made decisions
on behalf of a single simulated agent. Each agent ‘lived’ for
20 time periods, and in each time period, participants were
asked to complete a single trial of a multi-armed bandit
task for their agent. The task was framed as a treasure hunt
(figure 1); participants were told they were visiting a country
(e.g. ‘France’) and were asked to decide which of the 10 poss-
ible locations in that country (e.g. ‘The Louvre’) contained the
treasure. Only one location in each country contained trea-
sure, and the treasure did not move within or between trials.

Agents were assigned a simulated genome consisting of
two genes: a learning gene (L) and a memory gene (M ),
both of which were represented as integer values (0 < L≤
10, M≥ 0). An agent’s genome placed certain constraints on
how their participant could interact with the task, although
participants were not told anything about their agent’s
simulated genome or its effects.

The country associated with each trial was determined as
follows: for each participant, at the start of the experiment,
four countries were selected at random from a list of 20. For
each trial, one of these four countries was selected at random
as the country for that trial. However, if at any point a country
was not visited within M trials, it was replaced with a pre-
viously unused country randomly selected from the initial
list of 20 countries. For instance, a participant with M = 5
may initially be assigned the four countries France, Senegal,
Mongolia and Italy. If their first trial takes place in Italy, but
Italy is not visited again across trials 2–6, it is ‘forgotten’ and
the next time Italy is selected, it is replaced with a different
country from the original list (excluding France, Senegal,
Mongolia and Italy). This procedure mimics forgetting by
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limiting how long information stored by participants remains
useful; in the above example, information about Italy was ren-
dered useless after it was not used for five trials. However, note
that participants may still forget information across fewer trials
(and they sometimes did, see below). As such, the value of M
places a cap on memory, but does not guarantee information
can be stored for that duration.

On their first visit to a country, participants were required
to ‘check’ L locations for the treasure (L being the value of
their agent’s learning gene). Participants checked a location
by clicking on it, and checking accurately revealed whether
or not the treasure was present at that location (figure 1a,b).
After checking L locations, participants were asked to
choose which location they thought had the treasure. On
trials at a previously visited country, participants could not
check any locations, and were required to make a decision
based on what they remembered from previous trials
(figure 1c). As such, the experimental design (including the
value of L for each participant) entirely determined how
much information participants collected on each trial, and
participants could only decide which locations to check.
These heavy constraints were used in order to check that
our experimental simulations could produce known results
when constraints effectively forced human behaviour to
match theoretical expectations [29].

After completing all 20 trials, agents were assigned a fit-
ness value f

f ¼ 10þ 10Ns �Nc � 2M, ð3:1Þ

where Ns is the number of trials on which their participant
chose the correct location of the treasure and Nc is the
number of times their participant checked a location. Note
that Nc and M are entirely determined by the experimental
design, but Ns depends on both the experimental design and
human behaviour (e.g. how good participants are at remem-
bering the location of the treasure). Negative fitness values
were set to 0 and all values were additionally squared to
increase fitness differences and allow selection to proceed
more rapidly. While this function produces selection far stron-
ger than is estimated in wild populations, strong selection is a
common assumption of evolutionary simulations in order to
produce reliable dynamics over reasonable time scales.

After fitness was calculated, the next generation of agents
(participants) was created (recruited). Agents inherited their
genes via asexual reproduction from a single agent in the pre-
vious generation, selected with probability proportional to
fitness. Given the fitness function, this implies that increasing
M or L will decrease simulated reproductive success, unless it
can be offset by increased decision-making accuracy by the par-
ticipant. Genetic inheritance was subject to mutation: there was
a 50% chance the value of each gene would be unchanged, a
25% chance that the value would increase by 1 and a 25%
chance that it would decrease by 1, unless the mutation pro-
duced a value outside the permitted range (e.g. a negative
value for M), in which case it was prevented. This mutation
rate is higher than in wild populations, but was chosen to
facilitate evolution over the short experimental time scales.

Participant performance affected their bonus, b, which
was calculated as

b ¼ max min
10Ns �Nc

200
, 0:5

� �
, 0

� �
: ð3:2Þ
The bonus calculation incentivizes participants to find the
treasure. Note that, because checking locations decreases
the bonus, participants who perform well despite having a
low value for L are rewarded with a larger bonus than
those who perform similarly but with a larger value of L.

(b) Analyses
We analysed the data with Bayesian models using Markov
chain Monte Carlo methods via the rjags package in R [54].
Parameter estimates are provided as the median and 95%
highest density interval of greater than 3000 independent
samples generated from three chains using the Gelman–
Rubin statistic (upper CI≤ 1.01) to check for convergence.

For each experimental simulation, we separately mod-
elled each agent’s learning capacity L and their memory
capacity M, as a normally distributed variable (N = 1600 per
simulation) with the following structure

L orM � Nðm,s2Þ
m ¼ bg
bg � N(0, 100)

s2 � Gamma(0:001, 0:001)

where βg is a parameter to be estimated that takes independent
values for each generation in the simulation.

To explore how participants’ learning behaviour changed
across their lifespan and across generations, we modelled
whether participants engaged in learning (i.e. checked any
locations) on a given trial as a Bernoulli variable (N = 32 000
per simulation) with the following structure

C � BernðpÞ
p ¼ e�rate�(trial–1) � (1� floor)þ floor

log(rate) ¼ b1 þ b2 � (generation� 20)
logit( floor) ¼ b3 þ b4 � (generation� 20)

b1:4 � N(0, 100)

,

where β1:4 are parameters to be estimated. The model assumes
that the probability a participant engages in learning on the
first trial is 1 (necessarily true, due to the experimental design)
but that it then decays at a speed given by rate towards the
value given by floor. Because both rate and floor are functions
of generation number, this allows the relationship between age
and behaviour to change across generations.

(c) Results
In the simulation where both learning and memory could
evolve, both learning and memory increased (L: β40 = 9.15,
[8.75, 9.55]; M: β40 = 6.67, [6.20, 7.13]), while the estimated
standard deviations were 1.29, [1.25, 1.34] and 1.51, [1.45,
1.56], respectively. These closely match theoretical expec-
tations (figure 2a). This similarity was expected because
constraints on participants’ behaviour meant that they
could fail to match theory only by (i) finding the treasure
but not choosing it (occurred on 484/8590 relevant trials,
5.6%), (ii) not finding the treasure but choosing somewhere
they knew the treasure was not (200/6639, 3%), or (iii) not
choosing the treasure’s location when revisiting a country
where they had previously found it (921/4595, 20%).
Though all three behaviours occurred, only the third was
common, and we suggest it likely resulted from participant
memory errors or inattention. The modification of prelimi-
nary theory to include this error suggests that (at observed
rates) it dampens the coevolution, but does not prevent it.



0 10 20 30 40

0

2

4

6

8

10

learning
memory
learning,
without memory

0 10 20 30 40 0 10 20 30 40

(b) (c)

generation

av
er

ag
e 

va
lu

e

(d)

pr
ob

ab
ili

ty
 o

f 
le

ar
ni

ng

0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20

generation 1

generation 21

generation 40

experiment
max-remember

style/strategy: experiment
flex-remember
guess

style/strategy:
experiment
max-remember
flex-remember
check-first

style/strategy:

1 5 10 15 20

0

1

2

3

4

5

am
ou

nt
 o

f 
le

ar
ni

ng

(e)

trial

generation generation

trial

( f )

am
ou

nt
 o

f 
le

ar
ni

ng

0

1

2

3

4

5

6

1 5 10 15 20
trial

(a)

Figure 2. (a–c) Experimental evolutionary dynamics produced across experiments 1–3. Solid lines show the median model estimates of the mean value of each
gene. The dark shaded area is the 95% HDI for the mean gene value. The light shaded area shows the median estimate of the standard deviation in the gene
values. (a) In the first experiment, experimental dynamics closely match the ‘max-remember’ strategy in which participants check L locations at unfamiliar countries,
0 at familiar countries and perfectly remember the location of the treasure for M trials, although this largely reflects the experimental design. (b) In the second
experiment, experimental dynamics closely match those of the ‘flex-remember’ strategy in which participants flexibly use their learning ability to minimize costs
(stopping as soon as the treasure is found) and perfectly remember the location of the treasure for M trials, but not the ‘guess’ strategy. (c) In the third experiment,
the experimental dynamics do not closely match any theoretical strategy. Learning evolves rapidly, as in the ‘flex-remember’ or ‘check-first’ (wherein participants
double check the past location of the treasure at familiar countries) strategies, but memory evolves much more slowly, resembling the ‘max-remember’ strategy seen
in experiment 1. (d–f ) The evolution of childhood presented as how much learning participants engaged in across their lifespan (i.e. trials) for different generations.
The solid lines are raw data averages, the semi-transparent lines show 100 model estimates of the most likely behaviour. (d ) In the first experiment, participants
evolve to decrease their probability of learning on later trials, resulting in an early ‘childhood’ followed by a later exploitation phase. (e) In the second experiment,
participants initially engage in a small amount of learning but do so consistently across their lifespan; however, they evolve to do a great deal of learning on the
early trials and then very little for the rest of their lifespan. Note that the model struggles to perfectly fit the raw data. This is because the model assumes steady,
linear change in life history over generations while the evolutionary dynamics (see b) are clearly not linear. Nonetheless, the model does detect the evolution of
childhood as discussed in the results. ( f ) In the third experiment, participants engage in a considerable amount of learning across their lifespan, and the amount of
learning increases across generations. There is evidence that individuals learn less as their lifespan progresses, but the effect is very small, and there is minimal
evidence that this is any more pronounced in later generations than in earlier generations.
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Moreover, its effect decreases when there is inter-individual
variation (i.e. when most errors are due to a minority of
forgetful individuals).

In the simulation where memory was fixed to 0, L also
increased (figure 2a, β40 = 3.59 [3.19, 4.04], s.d. = 1.36 [1.32,
1.41]), but was considerably lower than when memory was
also allowed to evolve. This provides evidence that memory
and learning were coevolving in the first simulation.

There was also a marked change in how much learning
participants engaged in across their lifespan as the simulation
progressed (figure 2d, β1:4 =−0.92, [−0.99, −0.86]; −0.04,
[−0.05, −0.04]; −0.82, [−0.87, −0.77]; −0.10, [−0.11, −0.10]).
In the first generation, there was only a modest decrease in
the probability that a participant engaged in learning as
their simulated lifespan progressed (probability of learning
on final trial = 0.77, [0.76, 0.78]), whereas in the final gener-
ation, this decrease was much more severe (probability of
learning on final trial = 0.09, [0.09, 0.10]). As such, the coevo-
lution of learning and memory produced a life history where
individuals engaged in a lot of learning over their first few
trials, but they were unlikely to engage in learning for
much of the second half of their lifespan. In the simulation
without memory, participants engaged in learning on every
trial, so no such trajectory evolved. Note, however, that
these results largely reflect the assumptions of the experimen-
tal design, but they will nonetheless serve as a baseline for
comparison with subsequent experiments.
4. Experiment 2
The first experiment produced the predicted coevolution, but
also placed heavy constraints on participants’ behaviour.
As such, we conducted a second experiment to explore the
evolutionary dynamics produced without these constraints.

(a) Methods
We carried out a single experimental evolutionary simulation
in which both learning and memory could evolve, with the
following differences: (i) Participants could check up to L
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locations at any country, whether familiar or not. As such, the
experimental design (including L) no longer determines how
much information participants collect, but instead places a
cap on how much information they collect. (ii) Because this
decouples learning behaviour from learning capacity, the fit-
ness costs of learning were split such that both learning
capacity (L) and checking locations (determined by the par-
ticipant) decreased fitness

f ¼ 10þ 10Ns � 0:5Nc � 2M� 0:5L: ð4:1Þ
(iii) We increased the number of trials to 40 to increase the
reliability of the evolutionary dynamics. (iv) In the light of
these extra trials, we increased the base payment and poten-
tial bonus payment to $0.60, where the bonus is calculated as

b ¼ max min
3(10Ns �Nc � 40)

1000
, 0:6

� �
, 0:0

� �
: ð4:2Þ

(b) Analyses
Analyses of L and M were the same as in experiment 1.
Rather than modelling whether participants engaged in
learning on a given trial, we instead modelled the amount
of learning participants engaged in (i.e. the number of
locations checked, Nc) a given trial (N = 32 000) with the
following structure

Nc �PoissonðmÞ
LogðmÞ¼b1þb2�generation þðb3þb4�generationÞ� trial

þb5,participant

b1:4 �N(0,0:01)

b5,1:1600�N(0,T)
T�Gamma (0:01,0:01)

(c) Results
The optimal strategy in this experiment is to check locations
until you find the treasure, and then rely on memory (see elec-
tronic supplementary material, §1). Participant behaviour was
broadly consistent with this, but less so when revisiting a
country. At unfamiliar countries (14 730 trials), participants
were most likely to search until they found (and then chose)
the treasure (49%) or until they reached their limit of L locations
(29% of trials). On the remaining trials, participants guessed
without searching (13%); began searching, but then guessed
anyway (5%); continued searching after finding the treasure
(4%); or found the treasure, but choose a different location
(less than 0.5%).When returning to a countrywhere the treasure
had previously been found (9113 trials), participants generally
did not repeat their past decision without further searching
(27%). Instead, they often rechecked the treasure’s prior location
(45%). Such behaviour may be optimal, given the fallibility of
human memory (see memory errors in experiment 1, and elec-
tronic supplementary material, §2). Alternatively, it may
reflect that participants did not trust the experimenters claim
that the treasure did not move. Regardless, the evolutionary
dynamics that resulted closely matched those produced by a
theoretical simulation assuming the optimal strategy (figure 2b,
L: β40 = 8.82, [8.42, 9.22], s.d. = 1.29, [1.25, 1.34]; M: β40 = 6.09,
[5.54, 6.65], s.d. = 1.78, [1.72, 1.85]), suggesting that the rate of
double-checking locations was small enough to onlyminimally
change evolutionary dynamics.

As in the first experiment, a period of childhood emerged in
the sense that, by the final generation, participants engaged in a
lot of learning over their first few trials, butmuch less across the
rest of their simulated lifespan (figure 2e). Across generations,
the amount of learning on the first trial increased (β1 = 0.97,
[0.93, 10.1]; β2 = 0.025, [0.022, 0.029]), but the change in
the amount of learning across trials decreased (β3 =−0.034,
[−0.035, −0.033]; β4 =−0.0019, [−0.0020, −0.0018]). In sum,
the coevolution between learning, memory and childhood
remained robust to giving participants increased freedom in
their behaviour, lending support to the hypothesis that
learning, memory and childhood have coevolved in human
history.
5. Experiment 3
Theory suggests that without a proportionate change
inbehaviour, the coevolution of learning and memory is dis-
rupted by unpredictable environmental change [29] (see also
[26]). This is because environmental change renders previously
collected information out of date and so reduces the payoffs
associated with long-term information storage. One possible
solution is for learners to assume that the environment can
change and check previously collected information, which
may be a routine part of human behaviour [55]. However,
accommodation to such so-called restless bandits is typically
imperfect, and so it is unclear how reliably participants’ behav-
iour will produce the coevolution in an unpredictable
environment. To determine this, in our final experiment, we
conducted one further simulation in which the environment
was unpredictable.

(a) Methods
The experimental design was the same as in the prior exper-
iment with the following changes. (i) For each country, on
every trial, the location of the treasure was randomized
with probability 0.4, with all locations being equally likely
to be chosen. (ii) The fitness function was changed as follows:

f ¼ 10þ 10Ns �Nc � 4M� 4L: ð5:1Þ
These changes were made following preliminary theory that
suggested, under these conditions, the evolutionary
dynamics produced by different candidate behaviours are
markedly different (figure 2c).

In this experiment, the near-optimal strategy (see electronic
supplementary material, §3) is to keep checking locations until
the treasure is found, and to recheck this location upon return-
ing, continuing to search if it hasmoved. This strategy supports
the coevolution of learning and memory, even when many
other strategies do not (figure 2c).

(b) Analyses
We conducted the same analyses as in the second experiment.

(c) Results
Participant behaviour was only partially consistent with the
near-optimal strategy of checking the most recent location
of the treasure when revisiting a familiar country. As
before, when participants arrived at an unfamiliar country
(40 875 trials), they usually checked at least one location
(89%). On these trials (N = 36 271), participants were likely
to continue checking until they found the treasure or ran
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out of checks, stopping early on 1962 trials (5%). When par-
ticipants located the treasure (N = 22 005), they typically
stopped checking (19 936 trials, 91%). When participants
returned to a country at which they had previously located
the treasure (N = 13 904), they immediately checked its pre-
vious location on 41% of trials, but committed to the past
location without checking on only 4.2% of trials. Unexpect-
edly, on the majority of such trials, participants initially
checked a location other than the reward’s previous location
(53%). This discrepancy may well reflect memory errors; such
errors were produced at lower rates in experiments 1 and 2,
and experiment 3 is more complicated and so errors may
be more likely. Alternatively, some participants may have
concluded the environment was sufficiently unpredictable
that they should just ignore their remembered information
entirely, an inefficient yet simple strategy.

The evolutionary dynamics produced do not closely match
those of any strategy considered theoretically (figure 2c).
Learning increased rapidly (β40 = 9.30 [8.97, 9.63]). However,
memory showed only a modest increase (β40 = 3.25 [2.77,
3.74]), more than expected, assumingparticipants do notmoni-
tor for environmental change (where memory is selected
against), but less than that expected with the optimal strategy.
Accordingly, the mismatch between human behaviour and the
optimal strategy suppressed the evolution of memory. None-
theless, there may still have been a coevolutionary interaction
because the modest increase in memory likely relied on the
evolution of learning.

Unlike the prior two experiments, a period of childhood
only minimally emerged. Instead participants continued to
engage in a large amount of learning across their lifetimes,
although by the later generations, they typically engaged in
more learning in the first trial than in later trials (figure 2f ).
The amount of learning on the first trial increased over
generations (β1 = 1.11, [1.07, 1.25]; β2 = 0.030, [0.027, 0.033]),
but the change in the amount of learning across trials
was very small (β3 =−0.004, [−0.005, −0.003]), with only
weak evidence for a meaningful interaction with generation
(β4 =−0.000, [−0.000, 0.000]). In sum, the coevolution
between learning, memory and childhood was significantly
dampened by environmental unpredictability.
6. Discussion
We have presented the results of a series of experimental
evolutionary simulations examining the coevolution of learn-
ing, memory and childhood. Across three experiments, we (i)
verified that our experiments produce robust evolutionary
dynamics by showing that when human behaviour is con-
strained to match theoretical expectations then the resulting
evolutionary dynamics closely match theory too; (ii) found
that even when assumptions about participant behaviour
are relaxed, the coevolution between learning and memory
still occurs, including the evolution of childhood; and
(iii) found that environmental unpredictability suppresses
the evolution of memory and the emergence of childhood.

Collectively, these results support existing theory on this
topic [29] by reinforcing the conclusion that learning and
memory have coevolved across human evolutionary history.
Moreover, they provide evidence that this coevolution would
also have produced a period of intense learning in early life
history. While this relationship between learning and life
history is part of many theories of human evolution (e.g.
the cognitive niche [56,57], cultural niche [41,58], collective
brain [59,60] and cultural drive [61] hypotheses), there has
been little direct modelling work (though see [26,62,63], for
models of the coevolution of cognition and life history more
generally, and [64,65] for models of when individual versus
social learning should be scheduled across the lifespan), with
most supporting evidence coming from large-scale compara-
tive studies, which find a correlation between learning and
childhood across species [66,67]. Thus, experimentally simulat-
ing the coevolution of learning, memory and childhood
provides a direct form of evidence that was previously unavail-
able. However, this work places important caveats on this
hypothesis, showing that environmental unpredictability can
disrupt the coevolution by impeding the evolution of
memory and, in turn, childhood. This is because environ-
mental change prevents information from remaining useful
indefinitely, reducing the benefit to information storage such
that it is favoured by selection only if memory is sufficiently
accurate (as was the case in the hypothetical check-first
strategy, but not in actual human behaviour).

One outstanding concern is that although these results
suggest that environmental unpredictability can disrupt the
evolution of childhood, humans (whohave an extended juvenile
period [18,19]) evolved during a period of unusually high
environmental variability [68–70]. Key here is to consider the
scale of the environmental variation in question. In our exper-
iment, the treasure had a probability of 0.4 of moving on any
given trial. Given that there are four possible destinations for
each trial, this makes total environmental change (i.e. all four
treasure items moving) probable every four trials or so (57%
chance after 4 trials, 98% chance after 10 trials). Given that
agents lived for 40 trials, and assuming a human lifespan of
70+ years, this corresponds to significant environmental
change roughly every decade. How does this compare to what
is known about environmental variation over human history?

The past 2 Myr have continued the general post-Mesozoic
trend of an increasingly cool, dry and unstable climate. In par-
ticular, an approximately 41 ky temperature oscillation started
around 1.5 Ma, shifting to a higher amplitude 100 ky cycle
around 650 kya [68]. However, these cycles are extremely slow
compared to human lifespans. Did more rapid variability exist
too? One limitation is that the resolution of current methods is
insufficient to identify small-scale variation in the distant past,
but finer details are visible over more recent history. Such ana-
lyses find abundant evidence of sudden climate fluctuations
during the two most recent glacial periods (i.e. the most recent
250 ky), with temperature changes of up to 7°C occurring on
time scales comparable to human lifespans [69,71,72]. Moreover,
historical data concerning the ‘little ice age’ (lasting from roughly
1300–1850 CE) show extensive variation on even shorter time
scales that significantly disrupted agriculture, fishing and
human populations more generally [73]. Collectively, this
suggests that submillennial (and even centennial) environmental
change was potentially widespread in human evolutionary his-
tory. Whether the rate of change approached the decadal
change simulated in our experiment remains unclear due to
limitations of current methodology, but it is perhaps less likely.
Regardless, our data support the prediction that such extremely
rapid change was rare as otherwise it may have prevented the
evolution of human cognition and life history.

Although our experiments have focused on human evol-
ution, the theory on which they are based [29] is not, and so
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these results are likely applicable to non-human species also.
Coupled with supporting comparative data [67], it is plausible
that memory, learning and life history have coevolved across
multiple species. Nonetheless, our results were generated
using human participants and similar experiments with
other species may produce different evolutionary dynamics.
While using populations of non-human animals at the scale
required here may be a challenge, large-scale cultural evol-
utionary experiments have been conducted in baboons [74]
and so it may be possible to replicate these experiments with
other species.

The results presented here also support ‘experimental evol-
utionary simulations’ as a means to study human evolution.
Our first experiment validated the approach by replicating
theoretical work. However, participants did not behave entirely
in line with theoretical expectations and in the final experiment,
this was sufficient to cause the resultant dynamics to diverge
from theoretical predictions. This highlights another value of
experimental simulations, as they can generate evolutionary
dynamics unanticipated by theory and impossible via tra-
ditional experimental methods. In this case, a theoretical
model that assumed the optimal strategy (double-checking pre-
vious treasure locations in the case of environmental change)
would have concluded that the coevolution was robust even
to the level of environmental unpredictability included in our
experiment. However, by using fallible human participants
instead, we found that the coevolution was less robust than
that the optimal strategy predicts, with memory suppressed
and little evidence of the evolution of childhood.

We do not suggest that experimental evolutionary
simulations should be considered a replacement for either tra-
ditional theoretical or experimental work. Rather they are
complementary, bridging the gap between the evolutionary
dynamics produced by theoretical work and the descriptions
of human behaviour produced by experimental work.
Indeed, the experiments presented here have several limit-
ations that could be addressed with additional theory,
experiments or experimental simulations. One is that while
learning and memory are associated with underlying genes,
the evolution of childhood in our study is a purely emergent
consequence of the decision-making of adult participants.
Indeed, our definition of childhood for the purposes of this
work is very limited, focusing solely on the timing of learning.
This impoverished description of childhood contrasts with the
more wide-ranging changes observed across human develop-
ment (e.g. the emergence of cognitive abilities such as theory
of mind), as well as the notion of dedicated childhood adap-
tations being the direct products of evolution [30,75]. Further
simulations could include additional genes that directly affect
the life history of the participants in the experiment, for
instance, nullifying the fitness effects of a certain number of
initial trials to mimic a protected period of childhood where
low-cost learning via ‘play’ is possible.

The use of adult participants in an experiment investi-
gating childhood is also potentially problematic because the
genuine psychology of children differs from that of adults
and so its inclusion may produce different evolutionary
dynamics. For instance, learning may not be as front-loaded
if it is inefficient during early childhood. There are ways to
work around this issue, although they are not simple. For
instance, experimental manipulations could mask aspects of
adult psychology in an attempt to mimic child psychology
during the early trials. Alternatively, each agent could be
assigned both an adult and a child participant to make
decisions at the appropriate stages of the agent’s life.

One might ask, given the use of adult participants, whether
our experiments speak more to periods of learning in adult life,
as opposed to childhood learning specifically. Indeed, some
general lessons may be drawn: if fitness depends on effective
learning at any point in the life cycle of an organism, then a
rich learning capacity may evolve, along with a memory
capacity sufficient to store the information for as long as it is rel-
evant. However, in our experiments, information collectionwas
not possible prior to the first experimental trial; similarly, infor-
mation usewas not possible after the final experimental trial. As
such, the hard boundaries of the experimental task correspond
better to birth and death than they do to the start and end of a
period of learning in adult life where information collected at
some earlier time may be relevant, and the information learnt
can continue to be used well into the future.

Another limitation of these experiments is that our
implementation of the memory gene is an imperfect attempt
at masking human memory. Because people can readily store
information for far longer than the duration of our experiment,
and because we were unable to force participants to forget
specific items, thememory genemerely rendered useless infor-
mation participants had stored beyond their imposed memory
limit. Nonetheless, the information likely was retained and
may have interfered with the acquisition of additional
information. This illustrates a general limitation of this
approach: while it can manipulate the experimental design to
mask certain cognitive abilities, it cannot actually remove the
abilities themselves.

A final limitation of the experiments here is the omission
of many traits believed to be relevant to human evolutionary
history. For instance, overall lifespan was held constant, and
cultural inheritance between participants was not possible.
The latter is likely important because it is believed that
cultural evolution, plus its interactions with genetic evol-
ution, have had significant consequences for human
cognitive evolution [41,58,76,77] and further work could
include communication between participants.

Across three experiments, we have presented data on the
coevolution of learning, memory and childhood. Collectively,
we find that the coevolution of cognition and life history is
supported by human decision-making, but can be prevented
by rapid environmental change. Crucially, we collected these
data from experimental evolutionary simulations, a novel
approach in which we can observe not only human behav-
iour, but also the evolutionary dynamics it produces. By
including human psychology in the evolutionary process,
such an approach has the potential to bridge the gap between
theory and experiment thereby allowing us to draw firmer
conclusions about human evolution.
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